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Growth of a driven interface in isotropic and anisotropic random media

Kwangho Park, Hyun-Joo Kim, and In-mook Kim
Department of Physics, Korea University, Seoul 136-701, Korea

~Received 12 May 2000!

We introduce a simple stochastic model for a driven interface in a random medium, in which we can control
the degree of the anisotropy of a random medium. When there is no anisotropy of a random medium, the
motion of a growing interface in our model can be well described by the quenched Edwards-Wilkinson
equation. When there is anisotropy of a random medium, however, the motion of a growing interface can be
described by the quenched Kardar-Parisi-Zhang~KPZ! equation. In the two interfaces, apart from one growing
in an isotropic medium and the other growing in an anisotropic medium, the growth rule of our model is the
same. Our results support the fact that the anisotropy of a random medium is a source of the KPZ nonlinearity.

PACS number~s!: 05.40.2a, 68.35.Fx, 47.55.Mh
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Depinning of a driven interface in a random medium h
been a popular research topic for a long time, becaus
frequently occurs, e.g., in random magnets@1#, in fluid inva-
sions in porous media@2#, and in depinning charge-densit
waves@3#. There have been many studies about the de
ning of a driven interface in a random medium via stocha
growth models @4–10#, renormalization-group analysi
@11,12#, continuum equations@13#, various experiments
@14,15#, etc.

Depinning dynamics of a driven interface can be w
explained by a simple Langevin-type continuum equat
@13#,

]h

]t
5n“2h~x,t !1

l

2
~“h!21h~x,h!1F, ~1!

whereh(x,t) is the height of the interface at positionx at
time t. The quenched noise satisfieŝh(x,h)&50 and

^h(x,h)h(x8,h8)&5dd8(x2x8)d(h2h8). Here d8 means
the substrate dimension. WhenlÞ0, Eq. ~1! is called the
quenched Kardar-Parisi-Zhang~QKPZ! equation@13#. When
l50, Eq. ~1! is called the quenched Edwards-Wilkinso
~QEW! equation @13#. The interface in Eq.~1! is pinned
when the driving forceF is smaller thanFc . However, the
interface moves with a constant velocityv;(F2Fc)

u for
F.Fc , whereu is the velocity exponent. This phenomeno
is called the pinning-depinning~PD! transition.

Near the depinning threshold, the depinned interfa
shows a nontrivial scaling behavior in the global interfa
width,

W~L,t ![K 1

Ld8 (
x

@h~x,t !2h̄~ t !#2L 1/2

, ~2!

whereh̄(t) andL denote the mean height at timet and sys-
tem size, respectively. The symbol^•••& stands for the sta
tistical average. The surface width shows a scaling beha
W;Lz f (t/Lz), where the scaling functionf (x) approaches a
constant forx@1, andf (x);xb for x!1 with z5z/b @13#.
The exponentsz, b, and z are called the roughness, th
growth, and the dynamic exponent, respectively. The rou
ness exponent is known to bez.0.63 for the QKPZ equa-
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tion andz.1;1.25 for the QEW equation ind851 @13#.
Analytical and numerical~using the model corresponding t
the discretization of the QEW equation! studies of the QEW
equation give us roughness exponentsz.1 and z.1.25,
respectively@11–13#. Also the roughness exponents of va
ous models, which are accepted to belong to the QEW u
versality class, are scattered betweenz.1 and z.1.25
@7–10#.

Many stochastic models@4–10#, which mimic the motion
of the driven interface in a random medium near the dep
ning threshold, were introduced and studied. Amaralet al.
@16# observed that the numerical results obtained in the st
of the stochastic models fall into two groups. In one grou
the growing velocityv(s) of a driven interface does not de
pend on the slopes of a tilted substrate near the depinnin
threshold or becomes independent ofs at the depinning
threshold, although there is the dependence ofv(s) on s far
from the depinning threshold. The stochastic models in t
group are known to belong to the QEW universality class.
the other,v(s) depends ons even at the depinning threshold
The stochastic models in this group are known to belong
the QKPZ universality class. In addition to the study
Amaralet al., Tanget al. @17# argued that the critical behav
ior of a driven interface in a random medium at the dep
ning threshold depends on whether the random medium
isotropic or anisotropic. When the random medium is isot
pic, v(s) does not depend on slopes. When the random
medium is anisotropic, however,v(s) depends on slopes.
They also suggested a method to find out whether the
dom medium is isotropic or anisotropic. The method me
sures the dependence of the depinning threshold forceFc(s)
on the slopes. They argued that the dependence ofFc(s) on
slope s originates from the anisotropy of the medium. B
carrying out stochastic model simulations, they showed t
Fc(s) depends ons in models wherev(s) depends ons at
the depinning threshold.

In this paper, we introduce a simple stochastic grow
model for a driven interface in a random medium near
depinning threshold, where we can control the degree of
isotropy of the medium. From the study, we show that
dependence ofvc(s) on s indeed originates from the aniso
ropy of the medium.
7679 ©2000 The American Physical Society
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We consider a simple self-organized automaton mo
~SOAM!, which was originally introduced by Leschhor
@18# to mimic the motion of a driven interface in an isotrop
medium at the depinning threshold. We modified a bit
growth rule of the original SOAM in order to control th
degree of the anisotropy of the medium. The growth rule
our model is as follows.~i! We assign a random numbe
between 0 and 1 on each lattice site in a (111)-dimensional
system, where the random number represents the impur
of a random medium.~ii ! For each timet we calculate the
local force for all sitei,

f i~ t !5(̂
j &

@hj~ t !2hi~ t !#1m~11g* s̃i !h i ,hi
, ~3!

where the sum is over the nearest neighbors of sitei, i.e., j
5 i 61, andm andg are integers.hi(t) denotes the height a
time t and sitei. h i ,hi

denotes the random number at sitei

and heighthi . The local slopes̃i is zero only whenhj2hi

50, otherwises̃i51. ~iii ! We increase the column havin
the maximumf max[max@ f i # among allf i as follows:

hi~ t11!5hi~ t !11 if f i5 f max,

hi~ t11!5hi~ t ! otherwise. ~4!

Wheng is 0, the growth rule of the model is the same as t
of the original SOAM. Dynamic behavior of the origina
SOAM is known to be well described by the quench
Edwards-Wilkinson ~QEW! equation near the depinnin
threshold. Leschhorn@18# obtained the roughness exponenz
by doing a computer simulation of the original SOAM. Th
obtained roughness exponent isz51.2460.01 in 111 di-
mensions. By carrying out computer simulations on o
model whenm52 andg50, we obtainedz.1.25 ~Fig. 2!.
We found through some simulations for different values om
that the value of the roughness exponent does not depen
the value ofm. Therefore, we used a fixed value ofm52 in
our simulation.

As the original SOAM is well described by the QEW
equation, our model can be described by the following c
tinuum equation withF5Fc :

]h~x,t !

]t
5n“2h~x,t !1h̃~x,h!1F, ~5!

where the quenched noise satisfies the condition^h̃(x,h)&
50 and ^h̃(x,h)h̃(x8,h8)&5@11 f ( s̃)#d(x2x8)d(h2h8).
f ( s̃) is a function depending on local slopes̃5u“hu. Whens̃

is nonzero,f ( s̃)Þ0. A simple scaling argument sugges
that there is an important length scale in Eq.~5!. If the length
in Eq. ~5! is known, the critical driving forceFc in Eq. ~5!
can be determined. Let us denote byl the domain size which
blocks the motion of the interface in a random medium wh
a driving force pushes the interface. One can rewrite Eq.~5!
for the l region as follows:

l dn l 22h1 l dF2@11 f ~ s̃!#1/2l d/250, ~6!

where the first term comes fromn“2h, the second is the
driving force, and the last is the contribution from the noi
which has a negative sign because we assume that it opp
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the motion of the interface. When the driving forceF is zero,
the interface is always pinned and there is no character
length scale. When the driving force is nonzero, howev
there can exist the characteristic length scale. The inter
becomes flat if the Laplacian term is stronger than the p
ning force by the noise. In that case, the interface is in
depinned state if the driving forceF is nonzero@19#. In d
.dc54 dimensions, the Laplacian term will always win fo
a very weak pinning force, and there is no pinning of t
interface. Therefore, there is no characteristic length scale
d.dc . The situation is different ford,dc . The equation
a'n l d22!@11 f ( s̃)#1/2l d/2 provides the characteristic lengt
scale

l c;S n2a'
2

@11 f ~ s̃!#1/2D 1/(42d)

, ~7!

wherea' is a constant. Fore542d.0, the smoothening
effect of n“2h dominates for the length scalel ! l c , while
for l @ l c the interface wanders, taking advantage of the lo
energy configuration in the disorder. In the case ofl @ l c , the
pinning force term wins the Laplacian term. Therefore, t
driving force needs to be larger than the maximum pinn
force in order for the interface to be in a depinned state. T
maximum pinning forceFc can be obtained from Eq.~6! by
equating the driving force with the pinning effect of th
noise and using Eq.~7!,

Fc~s!.$@11 f ~ s̃!#/ l c
d%1/2;@11 f ~ s̃!#2/e. ~8!

Fc is the critical driving force of the pinning-depinning tran
sition. Wheng is nonzero, there exists the dependence
Fc(s) on slopes, although we do not know the exact func
tional form ofFc(s). Therefore, by putting nonzerog in our
model, we can control the anisotropic effect of a rando
medium.

We carried out computer simulation of our model forg
50, 0.5, 1, 5, and 10. Numerical data were averaged ty
cally over 100 configurations. In order to obtain the grow
exponent, we measured the time-dependent behavior of
interface widthW(L,t) starting from the initially flat inter-
face. We plotW2(L,t) versus timet in double-logarithmic
scale in Fig. 1. The interface width grows with the expone
b.0.73 for g50. However, we could not obtain the valu
of the growth exponent for larger values ofg because the
width saturates as soon as the interface starts growing.
value of the obtained growth exponent atg50 is a bit
smaller than that obtained from some stochastic growth m
els in the QEW universality class, but is in comparative
good agreement with that value, 0.75, expected from the a
lytical solution of the QEW equation@11,12#.

In order to obtain the roughness exponent, we plot
saturated value ofW2(L,t) versus system sizeL in double
logarithmic scale in Fig. 2. We obtainedz51.25 in the QEW
universality class wheng50 andz.0.65 for large values of
g (>5) in the QKPZ universality class. For small values
g (0.5<g<1), we could not obtain the exact roughness e
ponent because of the crossover behavior. However,
possible to conclude that the local slope of the width in F
2 decreases as the system size becomes larger. In view o
result wheng>5 and the decrease of the local slope in lar
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PRE 62 7681GROWTH OF A DRIVE INTERFACE IN ISOTROPIC . . .
system size when 0,g,1, we argue that our model hasz
.0.65 wheng.0 and belongs to the QKPZ universali
class.

We have also measured the height-height correla
function C(x) defined as

C~x!5K 1

Ld8 (
x

@h~x1x1 ,t!2h~x1 ,t!#2L 1/2

, ~9!

where timet is larger than the saturation time, andC(x)
scales asxz8. The roughness exponent value fromC(x) is
z8.0.96 wheng50 andz8.0.64 wheng>1 ~see Fig. 3!.
The values ofz8 wheng50 and wheng>1 agree well with
those expected from the QEW and the QKPZ universa
class, respectively. Wheng50, the value ofz8 is smaller
than the one obtained from the interface width. It is w
known that the anomalous scaling of the local width is due
the super-roughening, in such a way that the roughness
ponentz8 obtained from the height-height correlation fun
tion is smaller than the one obtained from the saturated v
of W2(L,t) @7–9#. Super-rough scaling occurs when th
roughness exponent of the width isz.1. Wheng51 and

FIG. 1. The plot of widthW2(t) vs t is shown forg50, 0.5, 1,
5, and 10 from top to bottom, respectively. The system sizeL is
4096. The straight line represents 2b51.46.

FIG. 2. The plots of widthW2(L) vs L is shown forg50, 0.5,
1, 5, and 10 from top to bottom, respectively. The system siz
L564–4096. The top line represents 2z52.5 and the bottom line
represents 2z51.3.
n
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L54096, the roughness exponentz8 shows a crossover be
havior from z8.0.64 for small values ofx to z8.0.64 for
large values ofx. These results also support the fact that o
model hasz8.0.64 wheng.0 and so belongs to the QKP
universality class.

Several years ago, Wolf studied the anisotropic K
~AKPZ! equation with annealed noise in 211 dimensions by
using the dynamic renormalization-group~RG! method@20#.
The annealed-noise AKPZ equation is written as

]h

]t
5n'“'

2 h~x,t !1n i“ i
2h~x,t !1

l'

2
~“'h!2

1
l i

2
~“ ih!21h~x,t !, ~10!

where“' (“ i) is the gradient along the perpendicular~par-
allel! directions. The annealed noise satisfies^h(x,t)&50
and ^h(x,t)h(x8,t8)&5dd8(x2x8)d(t2t8). The anisotropy
meansn i /n'Þ1 and l i /l'Þ1. He found that when the
signs ofl ’s are opposite, the nonlinear terms turn out to
irrelevant under the RG transformation. Therefore,
annealed-noise AKPZ equation with opposite signs ofl be-
longs to the weak-coupling limit, the annealed EW unive
sality class. However, the crossover process from the QK
to the QEW universality class in our model occurs by a d
ferent mechanism from that occurring in the annealed-no
AKPZ equation. In our model, the KPZ nonlinearity is in
duced by an anisotropic random medium, and the nolinea
disappears if the medium is isotropic. This is because the
no source of producing the KPZ nonlinearity in the grow
rule of our model except the anisotropy of the medium.

In summary, we have introduced a simple growth mo
for a driven interface in a random medium, where the deg
of anisotropy of the medium is controlled by a parameterg.
At g50, there is no anisotropy of the medium in our mod
For g.0, however, there exists anisotropy of the medium
our model. By carrying out the Monte Carlo simulation
our model, we found that our model belongs to the quenc
Edwards-Wilkinson universality class wheng50. We then

is

FIG. 3. The plot of the height-height correlation functionC2(x)
vs x is shown forg50 ~top!, g51 ~middle!, andg510 ~bottom!
with the system sizeL54096. The top straight line represen
2z851.92. The middle straight line represents 2z851.28. The bot-
tom straight line represents 2z851.27.
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found that our model belongs to the quenched Kardar-Pa
Zhang universality class wheng.0. These facts support th
argument that the anisotropy of the medium can produce
KPZ nonlinearity in the interface driven through the rando
media near the depinning threshold. It is well known that
KPZ nonlinearity induces the dependence ofvc(s) on slopes
of the driven interface in a random medium. From the mo
-

.

,

i-

e

e

l

simulation, we showed that the dependence ofvc(s) on s
indeed originates from the anisotropy of the medium.
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