PHYSICAL REVIEW E VOLUME 62, NUMBER 6 DECEMBER 2000

Growth of a driven interface in isotropic and anisotropic random media
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We introduce a simple stochastic model for a driven interface in a random medium, in which we can control
the degree of the anisotropy of a random medium. When there is no anisotropy of a random medium, the
motion of a growing interface in our model can be well described by the quenched Edwards-Wilkinson
equation. When there is anisotropy of a random medium, however, the motion of a growing interface can be
described by the quenched Kardar-Parisi-Zh@gZ) equation. In the two interfaces, apart from one growing
in an isotropic medium and the other growing in an anisotropic medium, the growth rule of our model is the
same. Our results support the fact that the anisotropy of a random medium is a source of the KPZ nonlinearity.

PACS numbgs): 05.40-a, 68.35.Fx, 47.55.Mh

Depinning of a driven interface in a random medium hastion and /=1~1.25 for the QEW equation id’=1 [13].
been a popular research topic for a long time, because Analytical and numericajusing the model corresponding to
frequently occurs, e.g., in random magnigtk in fluid inva-  the discretization of the QEW equatjostudies of the QEW
sions in porous medig2], and in depinning charge-density equation give us roughness exponetits1 and {=1.25,
waves|[3]. There have been many studies about the depinrespectively{11-13. Also the roughness exponents of vari-
ning of a driven interface in a random medium via stochastics models, which are accepted to belong to the QEW uni-

growth  models [4-10], renormalization-group analysis yersality class, are scattered betwegs1 and {=1.25
[11,12, continuum equationg13], various experiments [7-10.

(14,19, etc. Many stochastic modelgt—10], which mimic the motion

Depinning dynamics of a driven interface can be We"of the driven interface in a random medium near the depin-

[expilained by a simple Langevin-type continuum equationning threshold, were introduced and studied. Amaxtaal
13], , . .

[16] observed that the numerical results obtained in the study
oh A of the stochastic models fall into two groups. In one group,
i szh(X,t)+§(Vh)2+ n(x,h)+F, (1)  the growing velocityv (s) of a driven interface does not de-

pend on the slops of a tilted substrate near the depinning
threshold or becomes independent ofat the depinning
threshold, although there is the dependence(s) on s far
from the depinning threshold. The stochastic models in this
group are known to belong to the QEW universality class. In

guenched Kardar-Parisi-Zha@@KP2) equation13]. When :[Phe ot?eré}(sz_ depeor|1dls (.)Bti\./en atthe depklnnmgtthrk()eslhold.t
A=0, Eq. (1) is called the quenched Edwards-Wilkinson € stochastic models in this group are known 1o belong 1o

(QEW) equation[13]. The interface in Eq(1) is pinned the QKPZ universality class. In addition to _the study of
when the driving forceF is smaller tharF, . However, the Amaralet al, Tanget al.[17] argued that the critical behav-
interface moves with a constant velocity- (F —F,)? for ior of a driven interface in a random medium at the depin-
F>F,, whered is the velocity exponent. This phenomenon ning threshold depends on whether the random medium is
is called the pinning-depinningPD) transition. isotropic or anisotropic. When the random medium is isotro-
Near the depinning threshold, the depinned interfacdiC, v(s) does not depend on slope When the random

shows a nontrivial scaling behavior in the global interfacemedium is anisotropic, howeves,s) depends on slope.
width, They also suggested a method to find out whether the ran-

dom medium is isotropic or anisotropic. The method mea-
1 o 12 sures the dependence of the depinning threshold feg¢s)
W(L,t)= < — > [h(x,t)—h(t)]2) | (2)  onthe slopes. They argued that the dependencd=gfs) on
L™ x slope s originates from the anisotropy of the medium. By
o carrying out stochastic model simulations, they showed that
whereh(t) andL denote the mean height at timend sys- F(s) depends ors in models wherey(s) depends ors at
tem size, respectively. The symbpl- -) stands for the sta- the depinning threshold.
tistical average. The surface width shows a scaling behavior In this paper, we introduce a simple stochastic growth
W~ L¢f(t/L?%), where the scaling functiof(x) approaches a model for a driven interface in a random medium near the
constant forx>1, andf(x)~x? for x<1 with z=¢/8[13].  depinning threshold, where we can control the degree of an-
The exponents, B, and z are called the roughness, the isotropy of the medium. From the study, we show that the
growth, and the dynamic exponent, respectively. The roughdependence af .(s) on s indeed originates from the anisot-
ness exponent is known to le=0.63 for the QKPZ equa- ropy of the medium.

whereh(x,t) is the height of the interface at positionat
time t. The quenched noise satisfigs;(x,h))=0 and

<n(x,h)77(x’,h’)>=6d'(x—x’)5(h—h’). Here d’ means
the substrate dimension. Wher¥0, Eq. (1) is called the
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We consider a simple self-organized automaton modethe motion of the interface. When the driving forleés zero,
(SOAM), which was originally introduced by Leschhorn the interface is always pinned and there is no characteristic
[18] to mimic the motion of a driven interface in an isotropic length scale. When the driving force is nonzero, however,
medium at the depinning threshold. We modified a bit thethere can exist the characteristic length scale. The interface
growth rule of the original SOAM in order to control the becomes flat if the Laplacian term is stronger than the pin-
degree of the anisotropy of the medium. The growth rule ohing force by the noise. In that case, the interface is in a
our model is as follows(i) We assign a random number depinned state if the driving forcE is nonzero[19]. In d
between 0 and 1 on each lattice site in a-(Il)-dimensional >d.=4 dimensions, the Laplacian term will always win for
system, where the random number represents the impurities very weak pinning force, and there is no pinning of the
of a random medium(ii) For each timet we calculate the interface. Therefore, there is no characteristic length scale for
local force for all sitel, d>d.. The situation is different fod<d.. The equation

B a, v1972<[1+1(s) Y492 provides the characteristic length
fi<t)=% [hi(O)—h(t)]+m(1+g*s) 7, (3  scale
v2a?
where the sum is over the nearest neighbors ofisite., | [~ -
=i+1, andmandg are integersh;(t) denotes the height at [1+f(s)]™

time t and sitei. #; , denotes the random number at site

1/(4—d)
) : (7)

) ~ . wherea, is a constant. Foe=4—d>0, the smoothening
and he|ghthi.. The IOC‘?_‘.' S|°p§i is zero only Whemi_hi_ effect of »V2h dominates for the length scale<! ., while
=0, otherwises;=1. (iii) We increase the column having for |>1, the interface wanders, taking advantage of the low-

the maximumf ,,,=max f;] among allf; as follows: energy configuration in the disorder. In the caséef,, the
h(t+1)=hi(t)+1 if f=f .. pinning force term wins the Laplacian term. Therefore, the
(D =hi() boomax driving force needs to be larger than the maximum pinning
hi(t+1)=h;(t) otherwise. (4)  force in order for the interface to be in a depinned state. The

maximum pinning forcd=. can be obtained from E6) by

Wheng is 0, the growth rule of the model is the same as thakquating the driving force with the pinning effect of the
of the original SOAM. Dynamic behavior of the original noise and using Eq7),
SOAM is known to be well described by the quenched _ _
Edwards-Wilkinson (QEW) equation near the depinning Fo(s)={[1+f(s)]/192~[1+f(s)]%~. (8)
threshold. Leschhorfi8] obtained the roughness exponént
by doing a computer simulation of the original SOAM. The F_ is the critical driving force of the pinning-depinning tran-
obtained roughness exponentﬁg 1.24+0.01 in 1+1 di- sition. Wheng is nonzero, there exists the dependence of
mensions. By carrying out computer simulations on ourFc(S) on slopes, although we do not know the exact func-
model whenm=2 andg=0, we obtained =1.25 (Fig. 2. tional form of F.(s). Therefore, by putting nonzeigin our
We found through some simulations for different valuesnof model, we can control the anisotropic effect of a random
that the value of the roughness exponent does not depend dredium.
the value ofm. Therefore, we used a fixed valuerf=2 in We carried out computer simulation of our model fpr
our simulation. =0, 0.5, 1, 5, and 10. Numerical data were averaged typi-

As the original SOAM is well described by the QEW cally over 100 configurations. In order to obtain the growth
equation, our model can be described by the following conexponent, we measured the time-dependent behavior of the

tinuum equation wittF=F_: interface widthW(L,t) starting from the initially flat inter-
face. We plotW?(L,t) versus timet in double-logarithmic
dh(x,t) = V2h(x,t)+ 7(x,h) +F, (5) scale in Fig. 1. The interface width grows with 'Fhe exponent
at B=0.73 forg=0. However, we could not obtain the value

_ of the growth exponent for larger values gfbecause the
where the quenched noise satisfies the condiig(x,h)) width saturates as soon as the interface starts growing. The
=0 and <7;(x,h)77(x’,h’)>=[1+f(E)]cS(x—x’)(S(h—h’). value of the obtained growth exponent g&=0 is a bit
f(3) is a function depending on local slope: IVh. Whens sma_ller than that ob_tained .from some stqch_astic growth.mod—
is nonzero,f(3)#0. A simple scaling argument suggests els in the QEW unlversallty class, but is in comparatively
that there is an important length scale in &), If the length good agreement with that value, 0.75, expected from the ana-

. . o o : lytical solution of the QEW equatiofil1,12.
in Eq. (5) is known, the critical driving forcd-. in Eq. (5) :
can be determined. Let us denotelliife domain size which In order to obtain the roughness exponent, we plot the

blocks the motion of the interface in a random medium whe saturated value ofV*(L,t) versus system size in double
- ) . r]ogarithmic scale in Fig. 2. We obtaingd-1.25 in the QEW
a driving force pushes the interface. One can rewrite(B)y.

for the | region as follows: universality class wheg=0 and{=0.65 for large values of
: g (=5) in the QKPZ universality class. For small values of
1991 ~2h+19F —[1+f(5)]¥492=0, (6) g (0.5=g=<1), we could not obtain the exact roughness ex-
ponent because of the crossover behavior. However, it is
where the first term comes fromV?h, the second is the possible to conclude that the local slope of the width in Fig.
driving force, and the last is the contribution from the noise,2 decreases as the system size becomes larger. In view of the
which has a negative sign because we assume that it opposesult wherg=5 and the decrease of the local slope in large
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FIG. 1. The plot of widthW2(t) vst iS_ShOWH forg=0, 0-5,_ 1 FIG. 3. The plot of the height-height correlation functiéA(x)
5, and 10 from top.to bottom, respectively. The system &ide vs x is shown forg=0 (top), g=1 (middle), andg= 10 (bottom)
4096. The straight line representg 2 1.46. with the system sized.=4096. The top straight line represents

2{'=1.92. The middle straight line represents 2 1.28. The bot-
system size when€Qg<1, we argue that our model h@s  tom straight line represents/2=1.27.
=0.65 wheng>0 and belongs to the QKPZ universality

class. _ _ - L=4096, the roughness exponefitshows a crossover be-
We have also measured the height-height correlatiomavior from ¢’ >0.64 for small values ok to {'~0.64 for
function C(x) defined as large values ok. These results also support the fact that our

1 172 model hag’=0.64 wheng>0 and so belongs to the QKPZ
C(x)=<7 2 [h(x+x1,r)—h(x1,7)]2> ., 9 universality class.
L™ x Several years ago, Wolf studied the anisotropic KPZ
. . . ) (AKPZ) equation with annealed noise in-2L dimensions by
where t|me,r is larger than the saturation time, a@{x) using the dynamic renormalization-gro(RG) method[20].
scales ax‘ . The roughness exponent value fr@{x) is  The annealed-noise AKPZ equation is written as
{'=0.96 wheng=0 and{’'=0.64 wheng=1 (see Fig. 3

The values o’ wheng=0 and wherg=1 agree well with @z v, V2h(x,t) + »V2h(x t)+£(V h)2

those expected from the QEW and the QKPZ universality gt T TR AL

class, respectively. Wheg=0, the value of{’ is smaller N

than the one obtained from the interface width. It is well +§”(V”h)2+ 7(X,1), (10)

known that the anomalous scaling of the local width is due to

the super-roughening, in such a way that the roughness ex-

ponent?’ obtained from the height-height correlation func- whereV, (V) is the gradient along the perpendiculpar-

tion is smaller than the one obtained from the saturated valu@llel) directions. The annealed noise satisfieg(x,t))=0

of W2(L,t) [7-9]. Super-rough scaling occurs when the and(n(x,t)n(x’,t’)>=6d'(x—x’)6(t—t’). The anisotropy

roughness exponent of the width §s>1. Wheng=1 and meansy| /v, #1 and\j/\, #1. He found that when the
signs of\’s are opposite, the nonlinear terms turn out to be

' ' <7 irrelevant under the RG transformation. Therefore, the

6t <76 annealed-noise AKPZ equation with opposite signa dife-

L7 e | longs to the weak-coupling limit, the annealed EW univer-

° * sality class. However, the crossover process from the QKPZ

Lo 1 to the QEW universality class in our model occurs by a dif-

- . ferent mechanism from that occurring in the annealed-noise
g 2t I : N e AKPZ equation. In our model, the KPZ nonlinearity is in-
ot &y e duced by an anisotropic random medium, and the nolinearity
I o ox =T ] disappears if the medium is isotropic. This is because there is
0 % X 1 no source of producing the KPZ nonlinearity in the growth
P 1 rule of our model except the anisotropy of the medium.
) . . In summary, we have introduced a simple growth model
7 3 4 for a driven interface in a random medium, where the degree
of anisotropy of the medium is controlled by a parameger
InL At g=0, there is no anisotropy of the medium in our model.
FIG. 2. The plots of widthV3(L) vs L is shown forg=0, 0.5, Forg>0, however, there exists anisotropy of the medium in
1, 5, and 10 from top to bottom, respectively. The system size i®ur model. By carrying out the Monte Carlo simulation of
L=64-4096. The top line represent§=22.5 and the bottom line our model, we found that our model belongs to the quenched
represents 2=1.3. Edwards-Wilkinson universality class whep=0. We then
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found that our model belongs to the quenched Kardar-Pariskimulation, we showed that the dependencevgfs) on s

Zhang universality class whegi>0. These facts support the jhqeed originates from the anisotropy of the medium.
argument that the anisotropy of the medium can produce the

KPZ nonlinearity in the interface driven through the random  This work was supported in part by the Korean Science
media near the depinning threshold. It is well known that theand Engineering Foundatidg@ontract No. 98-0702-05-01)-3
KPZ nonlinearity induces the dependence gfs) on slopes  and also in part by the Ministry of Education through the
of the driven interface in a random medium. From the modeBK21 Project.
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